
νZ – a wide-spectrum logic
RefineNet

10 January 2005

Martin Henson

Department of Computer Science

University of Essex

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 1/54

Some (of my personal) history ...

• Program development in constructive set theories (–1997)
◦ a : A – “Propositions as types” (Martin-Löf; Feferman)

• Constructive Z (FMP 1998)
◦ Programs from (constructive) proofs

• Z logics (FACJ, JLC, 1999–2000)
◦ ZC and Z⊥

C
– Classical logics for Z

• Classical “sets of implementations” (FACJ 2003)
◦ f A U – Classical, non-Z ...

• Theories of refinement (JIGPAL 2003)
◦ total correctness refinement for partial relation semantics

• νZ– wide-spectrum logic
◦ U0 ⊒ U1 – Classical, non-Z, relational ...

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 2/54

What is νZ ...?

The framework νZ is a modification of the specification language
Z. The differences are as follows:

• Z is based on a partial-correctness semantics; νZ is based
on a total-correctness semantics.

• Z permits refinement of over–specifications; νZ does not.
• Z schema operators are not monotonic; νZ schema

operators are monotonic (anti-monotonic).
• Z is based on equality ; νZ is based on refinement.
• Z is a specification language; νZ is wide-spectrum.
• Z is relatively inflexible; νZ is extensible.
• Z is a language; νZ is a logic.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 3/54

What is νZ ...?

Core language of specifications:

U ::=

X – schema variable
[T | P | Q] – atomic schemas
¬U – negation schemas
U0 ∨ U1 – disjunction schemas
∃x : T • U0 – existential hiding schemas
µ X • U(X) – recursive schemas (positive X only)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 4/54

What is νZ ...?

The language of νZ is (at present) interpreted within Z⊥
C

, a
conservative extension of ZC , the Z logic developed by Steve
Reeves and me between 1997 and 2000.

Example semantics:

JU0 ∨ U1K =df {z ∈ T∗ | z
.

∈ JU0K ∨ z
.

∈ JU1K}

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 5/54

Z versus νZ semantics ...

An operation schema:

U

x,x′ ∈ {0, 1, 2, 3}

(x = 0 ∧ x′ = 0) ∨

(x = 2 ∧ x′ = 2) ∨

(x = 2 ∧ x′ = 3)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 6/54

Z semantics ...

The dots on the left correspond to the possible input states,
written 〈| x⇛n |〉 for the various of n. The dots on the right to the
possible output states, written 〈| x′⇛n |〉.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 7/54

νZ semantics ...

... the lifted-totalised completion of the original relation.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 8/54

What is a (wide-spectrum) logic ...?

Everything is characterised by introduction and elimination rules.
For example, atomic operation schemas:

z0.P ⊢ z0.z
′
1.Q

z0 ⋆ z′1 ∈ [T | P | Q]
(U+)

z0 ⋆ z′1 ∈ [T | P | Q] z0.P

z0.z
′
1.Q

(U−)

For example, refinement:

z ∈ U0 ⊢ z ∈ U1

U0 ⊒ U1

(⊒+)
U0 ⊒ U1 z ∈ U0

z ∈ U1
(⊒−)

For example, schema hiding:

z ∈ U

z
.

∈ ∃x : V • U
(U+

∃
) z ∈ ∃x : V • U z ⋆ 〈| x⇛y |〉 ∈ U ⊢ P

P
(U−

∃
)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 9/54

What is νZ ...?

Note that negation in νZ is not the relational inverse: it is
well-known that the universe of total-correctness relations in this
model is not closed under that operation. An alternative
characterisation of the semantics is available using a
combination of relational inverse, disjunction and lifting.

abort = {z0 ⋆ z′1 ∈ T∗ | z0 =⊥}

Then:
¬U =df U−1 ∨ abort

The rules for negation are:

t 6∈ U

t ∈ ¬U

t0 =⊥

t0 ⋆ t ′1 ∈ ¬U

t0 ⋆ t ′1 ∈ ¬U t0 ⋆ t ′1 6∈ U ⊢ P t0 =⊥ ⊢ P

P

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 10/54

What is νZ ...?

Properties of negation include:

Double negation: U = ¬¬U

Excluded middle: chaos = U ∨ ¬U.

Operator definitions are used to extend the core language:

OP(· · · Xi · · ·) =df U(· · · Xi · · ·)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 11/54

Specification in νZ ...

First specifications are to provide new ways to specify ...

We can define conjunction in terms of disjunction and negation,
using the usual de Morgan definition:

U0 ∧ U1 =df ¬(¬U0 ∨ ¬U1)

The usual rules are derivable.

z ∈ U0 ∧ U1

z
.

∈ Ui

z
.

∈ U0 z
.

∈ U1

z ∈ U0 ∧ U1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 12/54

Specification in νZ ...

Schema implication can be defined in the standard way.

U0 ⇒ U1 =df ¬U0 ∨ U1

With the rules:

z
.

∈ U0 ⊢ z
.

∈ U1

z ∈ U0 ⇒ U1

z ∈ U0 ⇒ U1 z
.

∈ U0

z
.

∈ U1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 13/54

Specification in νZ ...

Universal hiding can be specified using existential hiding and
negation:

∀x : T • U =df ¬∃x : T • ¬U

With the rules:

t ⋆ 〈| x⇛z |〉 ∈ U

t ∈ ∀x : T • U

t ∈ ∀x : T • U v ∈ T

t ⋆ 〈| x⇛v |〉 ∈ U

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 14/54

Specification in νZ ...

Further Examples:

abort =df [T | false | false] – abort
chaos =df [T | false | true] – chaos
chaosP =df [T | ¬P | false] – P–chaos
U[x⇛E] =df chaosx=E ∧ U – schema specialisation
U ↑ P =df chaosP ⇒ U – strengthened preconditions
ΞU =df [∆U | true | θU = θ′U] – Ξ-schemas
U ⋄ T =df U ∧ ΞT – skip–extension

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 15/54

Specification in νZ ...

Composition can be specified using a modification of the
standard approach:

U0
o

9 U1 =df ∃t • (U0 ⋄ TL)[α0/t] ∧ (U1 ⋄ TR)[α1/t]

With the rules:

t0 ⋆ t ′2
.

∈ U0 t0 =TL
t2 t2 ⋆ t ′1

.

∈ U1 t2 =TR
t1

t0 ⋆ t ′1 ∈ U0
o

9 U1

(U+
o

9

)

t0 ⋆ t ′1 ∈ U0
o

9 U1 t0 ⋆ t ′2
.

∈ U0, t0 =TL
t2, t2 ⋆ t ′1

.

∈ U1, t2 =TR
t1 ⊢ P

P
(U−

o

9

)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 16/54

Specification in νZ ...

Can also specify a programming language ...

(i) skip =df [∆T | true | θT = θ′T]

(ii) x:= E =df [x, x ′ : T | true | x ′ = E] ⋄ TE

(iii) if D then X0 else X1 =df X0 ↑ D ∧ X1 ↑ ¬D

(iv) begin var x;X end =df ∃x,x′ • X

(v) proc f(x) cases x in 0 : X0; m+ 1 : X1(f(m)) endcases =df

∀x : N • µ X • X0 ↑ x = 0 ∧ ∃m • X1(X [x⇛m]) ↑ x = m+ 1

(vi) f(E) =df f [x⇛E]

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 17/54

Program logic ...

Simple example, conditionals:

if D then U0 else U1 =df U0 ↑ D ∧ U1 ↑ ¬D

Rules:
z.D ⊢ z

.

∈ U0 ¬z.D ⊢ z
.

∈ U1

z ∈ if D then U0 else U1
(if+)

z ∈ if D then U0 else U1 z.D

z
.

∈ U0

(if−

)

z ∈ if D then U0 else U1 ¬z.D

z
.

∈ U1

(if−

)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 18/54

Inequational (refinement) logic ...

if D then [T | P | D ∧ Q] else [T | P | ¬D ∧ Q] ⊒ [T | P | Q]

Proof:

z.D ∨ ¬z.D

z.P
()

z ∈ if z.D
()

z ∈ [T | P | D ∧ Q]

z.(D ∧ Q)

z.Q

z.P
()

z ∈ if ¬z.D
()

z ∈ [T | P | ¬D ∧ Q]

z.(¬D ∧ Q)

z.Q

z.Q
()

z ∈ [T | P | Q]
()

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 19/54

Refinement logic ...

Preconditions and postconditions:

P1 ⊢ P0

[T | P0 | Q] ⊒ [T | P1 | Q]
(⊒+

pre)
Q0 ⊢ Q1

[T | P | Q0] ⊒ [T | P | Q1]
(⊒+

post)

Composition:

P2 ⊢ P0 ∧ ∀ v • Q0[x′/v] ⇒ P1[x′/v] ∃ u • Q0[x′/v] ∧ Q1[x′/v] ⊢ Q2

[T0 | P0 | Q0] o

9 [T1 | P1 | Q1] ⊒ [T0 g T1 | P2 | Q2]

Conjunction:

P2 ⊢ P0 ∧ P1 Q0 ∨ Q1 ⊢ Q2

[T0 | P0 | Q0] ∧ [T1 | P1 | Q1] ⊒ [T0 g T1 | P2 | Q2]
(⊒

∧
)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 20/54

Refinement logic ...

Completely general transformation of conjunction to
composition:

P2 ∨ P3 ⊢ P0 ∧ ∀ v • Q0[x′/v] ⇒ P1[x′/v]

∃ v • Q0[x′/v] ∧ Q1[x′/v] ⊢ Q2 ∧ Q3

[T0 | P0 | Q0] o

9 [T1 | P1 | Q1] ⊒ [T2 | P2 | Q2] ∧ [T3 | P3 | Q3]

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 21/54

Monotone inductive schemas ...

The µ X • U(X) are recursive schemas.
The schema algebra is monotonic (but not ω-continuous). Thus:

Jµ X • U(X)K =df

l
{X ∈ W | JU(X)K ⊒ X}

satisfies:
µ X • U(X) = U(µ X • U(X)) (µ)

It can be characterised as follows:
⊔

i<κ

U i(chaos) = µ X • U(X)

for some suitably f**k-off-huge ordinal κ.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 22/54

Primitive recursive procedures ...

It takes 6 schema operators to specify primitive recursion over
the natural numbers:

proc f(x) cases x in 0 : X0; m+ 1 : X1(f(m)) endcases =df

∀x : N • µ X • X0 ↑ x = 0 ∧ ∃m • X1(X [x⇛m]) ↑ x = m+ 1

Introduction rule (proof requires µ):

z.x = 0 ⊢ z
.

∈ U0 z.x = z.m+ 1 ⊢ z
.

∈ U1(f(m))

z
.

∈ f

Elimination rules:

z
.

∈ f z.x = 0

z
.

∈ U0

z
.

∈ f z.x = m+ 1

z
.

∈ U1(f(m))

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 23/54

Primitive recursive procedures ...

The rules for N are as follows:

0 ∈ N
(N+

) n ∈ N

n + 1 ∈ N
(N+

) n ∈ N

0 6= n + 1

n + 1 = m + 1
n = m

P(0) m ∈ N, P(m) ⊢ P(m + 1)

n ∈ N ⊢ P(n)
(N−)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 24/54

Primitive recursive procedures ...

Characterising a procedure in terms of (all) its invocations:

n ∈ N ⊢ f(n) ⊒ U[n]

f ⊒ U
(invN)

Proof:

z ∈ f
()

z.x = z.x
z ∈ f(z.x)

z.x ∈ N....
f(z.x) ⊒ U[z.x]

z ∈ U[z.x]
z ∈ U

f ⊒ U
()

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 25/54

Primitive recursive procedures ...

The rule for recursive synthesis:

U0 ⊒ U[0] f(m) ⊒ U[m] ⊢ U1(f(m)) ⊒ U[m+ 1]

f ⊒ U

Proof:

....
f(0) ⊒ U[0]

f(m) ⊒ U[m]....
f(m+ 1) ⊒ U[m+ 1]

f(n) ⊒ U[n]
N
−

f ⊒ U
(invN)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 26/54

Primitive recursive procedures ...

Base case:

U0 ⊒ U[0]

z ∈ f(0)
()

z.x = 0

z ∈ f(0)
()

z ∈ f
z ∈ U0

z ∈ U[0]

f(0) ⊒ U[0]
()

Induction case:

z ∈ f(m)
()

z.x = m+ 1

z ∈ f(m)
()

z ∈ f

z ∈ U1(f(m))

f(m) ⊒ U[m]
()

....
U1(f(m)) ⊒ U[m+ 1]

z ∈ U[m+ 1]

f(m+ 1) ⊒ U[m+ 1]
()

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 27/54

Other types ...

Lists:

proc f(x) cases x in

Nil : U0;

Cons m0 m1 : U1(f(m1)) endcases =df

∀x : List • µ X • U0 ↑ x = Nil ∧

∃m0,m1 • U1(X [x⇛m1]) ↑ x = Cons m0 m1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 28/54

Other types ...

Trees:

proc f(x) cases x in

Leaf m0 : U0;

Node m1 m2 : U1(f(m1), f(m2)) endcases =df

∀x : Tree • µ X • ∃m0 • U0 ↑ x = Leaf m0 ∧

∃m1,m2 • U1(X [x⇛m1], X [x⇛m2]) ↑ x = Node m1 m2

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 29/54

The “frame problem” ...

What does a specification say about behaviour outside the
precondition, and outside the frame?

Dec

x,x′ : N

x > 0

x′ = x− 1

Solutions:

– Refinement calculus: skip outside the frame.
– Henson-Reeves FACJ: Chaos outside the frame.
– νZ: silent outside the frame.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 30/54

A worked example

The Fibonacci numbers are, as usual, specified as follows:

fib ∈ N → N

fib(0) = 1

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n)

We shall take subtraction, over the natural numbers, to satisfy:

n − m = 0 whenever m > n

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 31/54

A worked example

The initial specification is:

Fib

y, y ′ ∈ N

z? ∈ N

y ′ = fib(z?)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 32/54

First Stage - frame expansion

The following variation expands the frame to include a new
observation, and strengthens the postcondition. Both these
transformations are refinements of the original specification.

ExFib

x, x ′, y, y ′ ∈ N

z? ∈ N

y ′ = fib(z?)

x ′ = fib(z? − 1)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 33/54

First Stage - frame expansion

We have the refinement :

ExFib ⊒ Fib

In particular: every implementation of ExFib is an implementation
of Fib.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 34/54

Second stage - schema valued functions

We specialise with respect to the input observation z?.
ExFib[z?⇛n] =

x, x ′, y, y ′ ∈ N

y ′ = fib(n)

x ′ = fib(n − 1)

We are preparing to derive a simply recursive procedure over
the input.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 35/54

Second stage – continued

• If c0 ⊒ U[z?⇛0]

• and c1 ⊒ U[z?⇛m + 1], assuming that p[m] ⊒ U[z?⇛m]

• then:

proc p[z?] cases z? in

0 : c0,

m + 1 : c1

endcases

⊒ U

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 36/54

Third stage – simplification

U[z?⇛0] simplifies to:

x, x ′, y, y ′ ∈ N

y ′ = 1 ∧ x ′ = 1

and this can be refined to the simultaneous assignment:

x, y := 1, 1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 37/54

Third stage – simplification

U[z?⇛m + 1] simplifies to:

x, x ′, y, y ′ ∈ N

y ′ = fib(m + 1)

x ′ = fib(m)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 38/54

Fourth stage – conjunction

We can express U[z?⇛m + 1] as a conjunction by splitting the
precondition:

U0[m] ∧ U1[m] ⊒ U[z?⇛m + 1]

Simplifying, we get:

U0[m]

x, x ′, y, y ′ ∈ N

m = 0

y ′ = 1

x ′ = 1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 39/54

Fourth stage – conjunction

U0[m]

x, x ′, y, y ′ ∈ N

m = 0

y ′ = 1

x ′ = 1

can, after weakening the precondition be refined to the
simultaneous assignment:

x, y := 1, 1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 40/54

Fifth stage – composition

U1[m]

x, x ′, y, y ′ ∈ N

∃ n ∈ N • m = n + 1

y ′ = fib(m + 1)

x ′ = fib(m)

A little analysis in the inequational logic (refinement rules)
permits us to express this as a composition:

U1[m] =df U3[m] o

9 Step

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 41/54

Fifth stage – continued

U3[m]

x, x ′, y, y ′ ∈ N

∃ n • m = n + 1

y ′ = fib(m)

x ′ = fib(m − 1)

By weakening the precondition:

U[z?⇛m] ⊒ U3[m]

and this can be refined to the recursive call :

p[m]

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 42/54

Fifth stage – continued

Step

x, x ′, y, y ′ ∈ N

x ′ = y

y ′ = x + y

This can be refined to a simultaneous assignment:

x, y := y, x + y

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 43/54

The derived program

proc p[z?] cases z? in

0 : x, y := 1, 1

m + 1 : if m == 0

then x, y := 1, 1

else p[m]; x, y := y, x + y

endcases

and this is a refinement of the original specification Fib.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 44/54

Structuring derivations

Consider the following specification:

Inc

n, n′ ∈ N

n′ = n + 1

We wish to consider this as a local operation over the local state
N. It is trivially implemented by:

n := n + 1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 45/54

Promotion ...

In the global state we have two numbers, represented by the
cartesian product N × N. The global operation simply
generalises the local operation by specifying which of the two
values is to be altered. The promotion schema explains how the
local and global state spaces are to be connected.

Promote

n, n′ ∈ N

p, p′ ∈ N × N

z? ∈ {0, 1}

(z? = 0 ∧ p.1 = n ∧ p′.1 = n′ ∧ p′.2 = p.2) ∨

(z? = 1 ∧ p.2 = n ∧ p′.2 = n′ ∧ p′.1 = p.1)

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 46/54

Derivation ...

Finally, the global operation is defined by hiding the local state
changes:

GlobalInc =df ∃ n, n′ ∈ N • Inc ∧ Promote

The first step in the derivation is to abstract with respect to the
input observation z? and then to expand the conjunction by
splitting the precondition of the promotion schema. This leads
to:

∃ n, n′ ∈ N • (Inc ∧ P0[m]) ∨ (Inc ∧ P1[m])

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 47/54

Derivation ...

Where, for example:

P0[m]

n, n′ ∈ N

p, p′ ∈ N × N

m = 0

p.1 = n

p′.1 = n′

p′.2 = p.2

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 48/54

Refinement – continued

We can refine Inc ∧ P0[m] to:

n, n′ ∈ N

p, p′ ∈ N × N

m = 0

p.1 = n

n′ = n + 1

p′.1 = n′

p′.2 = p.2

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 49/54

Refinement – continued

We can then express the schema as a composition of:

n, n′ ∈ N

p, p′ ∈ N × N

n′ = p.1 + 1

with:

n, n′ ∈ N

p, p′ ∈ N × N

p′.1 = n

p′.2 = p.2

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 50/54

Refinement – continued

The former can be refined to a composition of:

n, n′ ∈ N

p, p′ ∈ N × N

n′ = p.1

followed by:

Inc

n, n′ ∈ N

n′ = n + 1

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 51/54

Refinement

These are refined to:

n := p.1 and the local operation n := n + 1

and:

n, n′ ∈ N

p, p′ ∈ N × N

p′.1 = n

p′.2 = p.2

can be refined to an assignment:

p.1 := n

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 52/54

Refinement

The assignments now sequence to implement the relevant
composed specifications and the split precondition leads to a
conditional. The quantifed program can be refined into a block;
and the entire specification of GlobalInc into a procedure:
In summary we have the following program:

proc globalinc[z?]

begin var n;

if z? then n := p.1; n := n + 1; p.1 := n

else n := p.2; n := n + 1; p.2 := n

end

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 53/54

Conclusions ...

• νZ is very small and easy to understand.
• νZ is very adaptable for creating a more comprehensive

specification language.
• νZ is very adaptable for integrating a programming

language.
• νZ is completely formal.
• νZ is designed for reasoning about specifications.
• νZ is designed for reasoning about programs.
• νZ is designed for deriving programs from specifications.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 54/54

	Some (of my personal)
history ...
	What is
uZ ...?
	What is
uZ ...?
	What is
uZ ...?
	Z emph {versus}
uZ semantics ...
	Z semantics ...
	
uZ semantics ...
	What is a (wide-spectrum)
logic ...?
	What is
uZ ...?
	What is
uZ ...?
	Specification in
uZ ...
	Specification in
uZ ...
	Specification in
uZ ...
	Specification in
uZ ...
	Specification in
uZ ...
	Specification in
uZ ...
	Program logic ...
	Inequational (refinement)
logic ...
	Refinement logic ...
	Refinement logic ...
	Monotone inductive schemas ...
	Primitive recursive procedures ...
	Primitive recursive procedures ...
	Primitive recursive procedures ...
	Primitive recursive procedures ...
	Primitive recursive procedures ...
	Other types ...
	Other types ...
	The ``frame problem'' ...
	A worked example
	A worked example
	First Stage - frame expansion
	First Stage - frame expansion
	Second stage - schema valued functions
	Second stage -- continued
	Third stage -- simplification
	Third stage -- simplification
	Fourth stage -- conjunction
	Fourth stage -- conjunction
	Fifth stage -- composition
	Fifth stage -- continued
	Fifth stage -- continued
	The derived program
	Structuring derivations
	Promotion ...
	Derivation ...
	Derivation ...
	Refinement -- continued
	Refinement -- continued
	Refinement -- continued
	Refinement
	Refinement
	Conclusions ...

