νZ - a wide-spectrum logic

RefineNet
10 January 2005

Martin Henson
Department of Computer Science
University of Essex

Some (of my personal) history ...

- Program development in constructive set theories (-1997)
- a : A - "Propositions as types" (Martin-Löf; Feferman)
- Constructive Z (FMP 1998)
- Programs from (constructive) proofs
- Z logics (FACJ, JLC, 1999-2000)
- $\mathcal{Z}_{\mathcal{C}}$ and $\mathcal{Z}_{\mathcal{C}}^{\perp}-$ Classical logics for Z
- Classical "sets of implementations" (FACJ 2003)

○ f £ U - Classical, non-Z ...

- Theories of refinement (JIGPAL 2003)
- total correctness refinement for partial relation semantics
- $\nu \mathrm{Z}$ - wide-spectrum logic
- $U_{0} \sqsupseteq U_{1}$ - Classical, non-Z, relational ...

What is $\nu \mathrm{Z}$...?

The framework $\nu \mathrm{z}$ is a modification of the specification language Z. The differences are as follows:

- Z is based on a partial-correctness semantics; $\nu \mathrm{Z}$ is based on a total-correctness semantics.
- Z permits refinement of over-specifications; ν Z does not.
- Z schema operators are not monotonic; ν Z schema operators are monotonic (anti-monotonic).
- Z is based on equality; $\nu \mathrm{Z}$ is based on refinement.
- Z is a specification language; $\nu \mathrm{Z}$ is wide-spectrum.
- Z is relatively inflexible; νZ is extensible.
- Z is a language; $\nu \mathrm{Z}$ is a logic.

What is $\nu Z \ldots$?

Core language of specifications:

$$
\begin{aligned}
& \cup \quad::= \\
& x \quad \text { - schema variable } \\
& {[T|P| Q] \text { - atomic schemas }} \\
& \neg U \quad \text { - negation schemas } \\
& U_{0} \vee U_{1} \quad \text { - disjunction schemas } \\
& \exists \mathrm{x}: T \bullet U_{0} \text { - existential hiding schemas } \\
& \mu X \bullet U(X) \text { - recursive schemas (positive } X \text { only) }
\end{aligned}
$$

What is $\nu \mathrm{Z}$...?

The language of $\nu \mathrm{Z}$ is (at present) interpreted within $\mathcal{Z}_{\mathcal{C}}^{\perp}$, a conservative extension of $\mathcal{Z}_{\mathcal{C}}$, the Z logic developed by Steve Reeves and me between 1997 and 2000.

Example semantics:

$$
\llbracket U_{0} \vee U_{1} \rrbracket=_{d f}\left\{z \in T^{*} \mid z \dot{\in} \llbracket U_{0} \rrbracket \vee z \dot{\in} \llbracket U_{1} \rrbracket\right\}
$$

Z versus $\nu \mathrm{Z}$ semantics ...

An operation schema:

$$
\begin{aligned}
& U \\
& x, x^{\prime} \in\{0,1,2,3\} \\
& \left(x=0 \wedge x^{\prime}=0\right) \vee \\
& \left(x=2 \wedge x^{\prime}=2\right) \vee \\
& \left(x=2 \wedge x^{\prime}=3\right)
\end{aligned}
$$

Z semantics ...

The dots on the left correspond to the possible input states, written $\backslash \mathrm{x} \Rightarrow n \downarrow$ for the various of n. The dots on the right to the possible output states, written $\backslash \mathrm{x}^{\prime} \Rightarrow n \downarrow$.

ν Z semantics ...

... the lifted-totalised completion of the original relation.

What is a (wide-spectrum) logic ...?

Everything is characterised by introduction and elimination rules. For example, atomic operation schemas:

$$
\frac{z_{0} \cdot P \vdash z_{0} \cdot z_{1}^{\prime} \cdot Q}{z_{0} \star z_{1}^{\prime} \in[T|P| Q]}\left(U^{+}\right) \quad \frac{z_{0} \star z_{1}^{\prime} \in[T|P| Q] \quad z_{0} \cdot P}{z_{0} \cdot z_{1}^{\prime} \cdot Q}\left(U^{-}\right)
$$

For example, refinement:

$$
\frac{z \in U_{0} \vdash z \in U_{1}}{U_{0} \sqsupseteq U_{1}}\left(\sqsupseteq^{+}\right) \quad \frac{U_{0} \sqsupseteq U_{1} \quad z \in U_{0}}{z \in U_{1}}\left(\sqsupseteq^{-}\right)
$$

For example, schema hiding:

$$
\frac{z \in U}{z \dot{\in} \exists x: V \bullet U}\left(U_{\exists}^{+}\right) \quad \frac{z \in \exists x: V \bullet U \quad z \star \backslash x \Rightarrow y D \in U \vdash P}{P}\left(U_{\exists}^{-}\right)
$$

What is $\nu Z \ldots ?$

Note that negation in $\nu \mathrm{z}$ is not the relational inverse: it is well-known that the universe of total-correctness relations in this model is not closed under that operation. An alternative characterisation of the semantics is available using a combination of relational inverse, disjunction and lifting.

$$
\text { abort }=\left\{z_{0} \star z_{1}^{\prime} \in T^{*} \mid z_{0}=\perp\right\}
$$

Then:

$$
\neg U={ }_{d f} U^{-1} \vee \text { abort }
$$

The rules for negation are:
$\frac{t \notin U}{t \in \neg U} \quad \frac{t_{0}=\perp}{t_{0} \star t_{1}^{\prime} \in \neg U} \quad \frac{t_{0} \star t_{1}^{\prime} \in \neg U \quad t_{0} \star t_{1}^{\prime} \notin U \vdash P \quad t_{0}=\perp \vdash P}{P}$

What is $\nu \mathrm{Z}$...?

Properties of negation include:
Double negation: $U=\neg \neg U$
Excluded middle: chaos $=U \vee \neg U$.

Operator definitions are used to extend the core language:

$$
\mathrm{OP}\left(\cdots X_{i} \cdots\right)={ }_{d f} U\left(\cdots X_{i} \cdots\right)
$$

Specification in $\nu Z \ldots$

First specifications are to provide new ways to specify ...
We can define conjunction in terms of disjunction and negation, using the usual de Morgan definition:

$$
U_{0} \wedge U_{1}={ }_{d f} \neg\left(\neg U_{0} \vee \neg U_{1}\right)
$$

The usual rules are derivable.

$$
\frac{z \in U_{0} \wedge U_{1}}{z \dot{\in} U_{i}} \quad \frac{z \dot{\in} U_{0} \quad z \dot{\in} U_{1}}{z \in U_{0} \wedge U_{1}}
$$

Specification in ν Z ...

Schema implication can be defined in the standard way.

$$
U_{0} \Rightarrow U_{1}={ }_{d f} \neg U_{0} \vee U_{1}
$$

With the rules:

$$
\frac{z \dot{\in} U_{0} \vdash z \dot{\in} U_{1}}{z \in U_{0} \Rightarrow U_{1}} \quad \frac{z \in U_{0} \Rightarrow U_{1} \quad z \dot{\in} U_{0}}{z \dot{\in} U_{1}}
$$

Specification in $\nu Z \ldots$

Universal hiding can be specified using existential hiding and negation:

$$
\forall \mathrm{x}: T \bullet U=_{d f} \neg \exists \mathrm{x}: T \bullet \neg U
$$

With the rules:

$$
\frac{t \star \backslash \mathrm{x} \Rightarrow z\rangle \in U}{t \in \forall \mathrm{x}: T \bullet U} \quad \frac{t \in \forall \mathrm{x}: T \bullet U \quad v \in T}{t \star\langle\mathrm{x} \Rightarrow v\rangle \in U}
$$

Specification in ν Z ...

Further Examples:

abort	${ }_{d f}$	[T \| false \mid false $]$	- abort	
chaos	$d f$	[T \| false	true]	- chaos
chaos $_{P}$	$={ }_{d f}$	$[T \mid \neg P$ false]	- P-chaos	
$U[\mathrm{x} \Rightarrow \mathrm{E}]$	$={ }_{d f}$	chaos $_{\mathrm{x}=\mathrm{E}} \wedge \cup$	- schema specialisation	
$U \uparrow P$	$={ }_{d f}$	chaos $_{P} \Rightarrow U$	- strengthened preconditions	
ΞU	$={ }_{d f}$	[$\Delta U \\|$ true $\left.\mid \theta U=\theta^{\prime} U\right]$	- Ξ-schemas	
$U \diamond T$	$={ }_{d f}$	$U \wedge \Xi T$	- skip-extension	

Specification in $\nu Z \ldots$

Composition can be specified using a modification of the standard approach:

$$
U_{0} \stackrel{U_{1}}{ }=d f \exists \bar{t} \bullet\left(U_{0} \diamond T_{L}\right)\left[\alpha_{0} / \bar{t}\right] \wedge\left(U_{1} \diamond T_{R}\right)\left[\alpha_{1} / \bar{t}\right]
$$

With the rules:

$$
\begin{gathered}
\frac{t_{0} \star t_{2}^{\prime} \dot{\in} U_{0} \quad t_{0}=T_{L} t_{2} \quad t_{2} \star t_{1}^{\prime} \dot{\in} U_{1} \quad t_{2}=T_{R} t_{1}}{t_{0} \star t_{1}^{\prime} \in U_{0} U_{1}}\left(U_{9}^{+}\right) \\
\frac{t_{0} \star t_{1}^{\prime} \in U_{0}^{\circ} U_{1} \quad t_{0} \star t_{2}^{\prime} \dot{\in} U_{0}, t_{0}=T_{L} t_{2}, t_{2} \star t_{1}^{\prime} \dot{\in} U_{1}, t_{2}={ }_{T_{R}} t_{1} \vdash P}{P}\left(U_{9}^{-}\right)
\end{gathered}
$$

Specification in $\nu Z \ldots$

Can also specify a programming language ...
(i) $\mathrm{skip}={ }_{\text {df }}\left[\Delta T \mid\right.$ true $\left.\mid \theta T=\theta^{\prime} T\right]$
(ii) $\mathrm{x}:=E==_{d f}\left[x, x^{\prime}: T \mid\right.$ true $\left.\mid x^{\prime}=E\right] \diamond T_{E}$
(iii) if D then X_{0} else $X_{1}={ }_{\text {df }} X_{0} \uparrow D \wedge X_{1} \uparrow \neg D$
(iv) begin var $x ; X$ end $={ }_{d f} \exists x, x^{\prime} \bullet X$
(v) $\operatorname{proc} f(\mathrm{x})$ cases x in $0: X_{0} ; \mathrm{m}+1: X_{1}(f(\mathrm{~m}))$ endcases $=_{\text {df }}$ $\forall \mathrm{x}: \mathbb{N} \bullet \mu X \bullet X_{0} \uparrow \mathrm{x}=0 \wedge \exists \mathrm{~m} \bullet X_{1}(X[\mathrm{x} \Rightarrow \mathrm{m}]) \uparrow \mathrm{x}=\mathrm{m}+1$
(vi) $f(E)={ }_{d f} f[\mathrm{x} \Rightarrow E]$

Program logic ...

Simple example, conditionals:

$$
\text { if } D \text { then } U_{0} \text { else } U_{1}={ }_{d f} U_{0} \uparrow D \wedge U_{1} \uparrow \neg D
$$

Rules:

$$
\begin{gathered}
\frac{z . D \vdash z \dot{\in} U_{0} \neg z . D \vdash z \dot{\in} U_{1}}{z \in \text { if } D \text { then } U_{0} \text { else } U_{1}}\left(\text { if }^{+}\right) \\
\frac{z \in \text { if } D \text { then } U_{0} \text { else } U_{1} \quad z . D}{z \dot{\in} U_{0}}\left(\text { if }_{\mathrm{o}}^{-}\right) \\
\frac{z \in \text { if } D \text { then } U_{0} \text { else } U_{1} \quad \neg z . D}{z \dot{\in} U_{1}}\left(\text { if }_{1}^{-}\right)
\end{gathered}
$$

Inequational (refinement) logic ...

$$
\text { if } D \text { then }[T|P| D \wedge Q] \text { else }[T|P| \neg D \wedge Q] \sqsupseteq[T|P| Q]
$$

Proof:

Refinement logic ...

Preconditions and postconditions:

$$
\frac{P_{1} \vdash P_{0}}{\left[T\left|P_{0}\right| Q\right] \sqsupseteq\left[T\left|P_{1}\right| Q\right]}\left(\beth_{\text {pre }}^{+}\right) \quad \frac{Q_{0} \vdash Q_{1}}{\left[T|P| Q_{0}\right] \sqsupseteq\left[T|P| Q_{1}\right]}\left(\sqsupseteq_{\text {post }}^{+}\right)
$$

Composition:

$$
\frac{P_{2} \vdash P_{0} \wedge \forall \bar{v} \bullet Q_{0}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \Rightarrow P_{1}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \quad \exists \bar{u} \bullet Q_{0}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \wedge Q_{1}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \vdash Q_{2}}{\left.\left[T_{0}\left|P_{0}\right| Q_{0}\right] \stackrel{T_{0}}{ }\left|P_{1}\right| Q_{1}\right] \sqsupseteq\left[T_{0} \curlyvee T_{1}\left|P_{2}\right| Q_{2}\right]}
$$

Conjunction:

$$
\frac{P_{2} \vdash P_{0} \wedge P_{1} \quad Q_{0} \vee Q_{1} \vdash Q_{2}}{\left[T_{0}\left|P_{0}\right| Q_{0}\right] \wedge\left[T_{1}\left|P_{1}\right| Q_{1}\right] \sqsupseteq\left[T_{0} \curlyvee T_{1}\left|P_{2}\right| Q_{2}\right]}\left(\sqsupseteq_{\wedge}\right)
$$

Refinement logic ...

Completely general transformation of conjunction to composition:

$$
\begin{array}{ll}
P_{2} \vee P_{3} & \vdash P_{0} \wedge \forall \bar{v} \bullet Q_{0}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \Rightarrow P_{1}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \\
\exists \bar{v} \bullet Q_{0}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] \wedge Q_{1}\left[\overline{\mathrm{x}^{\prime}} / \bar{v}\right] & \vdash Q_{2} \wedge Q_{3} \\
\hline\left[T_{0}\left|P_{0}\right| Q_{0}\right]_{9}^{\circ}\left[T_{1}\left|P_{1}\right| Q_{1}\right] \sqsupseteq\left[T_{2}\left|P_{2}\right| Q_{2}\right] \wedge\left[T_{3}\left|P_{3}\right| Q_{3}\right]
\end{array}
$$

Monotone inductive schemas ...

The $\mu X \bullet U(X)$ are recursive schemas.
The schema algebra is monotonic (but not ω-continuous). Thus:

$$
\llbracket \mu x \bullet U(x) \rrbracket=_{d f}\lceil\{x \in W \mid \llbracket U(x) \rrbracket \sqsupseteq x\}
$$

satisfies:

$$
\mu X \bullet U(X)=U(\mu X \bullet U(X))
$$

It can be characterised as follows:

$$
\bigsqcup_{i<\kappa} U^{i}(\text { chaos })=\mu X \bullet U(X)
$$

for some suitably $f^{* *}$ k-off-huge ordinal κ.

Primitive recursive procedures ...

It takes 6 schema operators to specify primitive recursion over the natural numbers:

$$
\begin{gathered}
\operatorname{proc} f(\mathrm{x}) \text { cases } \mathrm{x} \operatorname{in} 0: X_{0} ; \mathrm{m}+1: X_{1}(f(\mathrm{~m})) \text { endcases }={ }_{d f} \\
\forall \mathrm{x}: \mathbb{N} \bullet \mu X \bullet X_{0} \uparrow \mathrm{x}=0 \wedge \exists \mathrm{~m} \bullet X_{1}(X[\mathrm{x} \Rightarrow \mathrm{~m}]) \uparrow \mathrm{x}=\mathrm{m}+1
\end{gathered}
$$

Introduction rule (proof requires μ):

$$
\frac{z . \mathrm{x}=0 \vdash z \dot{\in} U_{0} \quad z . \mathrm{x}=z . \mathrm{m}+1 \vdash z \dot{\in} U_{1}(f(\mathrm{~m}))}{z \dot{\in} f}
$$

Elimination rules:

$$
\frac{z \dot{\in} f \quad z . x=0}{z \dot{\in} U_{0}} \quad \frac{z \dot{\in} f \quad z . x=m+1}{z \dot{\in} U_{1}(f(m))}
$$

Primitive recursive procedures ...

The rules for \mathbb{N} are as follows:

$$
\begin{array}{r}
\overline{0 \in \mathbb{N}}\left(\mathbb{N}_{0}^{+}\right) \quad \frac{n \in \mathbb{N}}{n+1 \in \mathbb{N}}\left(\mathbb{N}_{1}^{+}\right) \quad \frac{n \in \mathbb{N}}{0 \neq n+1} \\
\frac{n+1=m+1}{n=m} \quad \frac{P(0) \quad m \in \mathbb{N}, P(m) \vdash P(m+1)}{n \in \mathbb{N} \vdash P(n)}\left(\mathbb{N}^{-}\right)
\end{array}
$$

Primitive recursive procedures ...

Characterising a procedure in terms of (all) its invocations:

$$
\frac{n \in \mathbb{N} \vdash f(n) \sqsupseteq U[n]}{f \sqsupseteq U}\left(i n v_{\mathbb{N}}\right)
$$

Proof:

$$
\frac{\overline{z \in f}(1) \overline{z . x=z \cdot x}}{\frac{z \in f(z . x)}{} \quad \begin{array}{c}
\overline{z . x} \in \mathbb{N} \\
\vdots \\
\frac{z \cdot x \cdot x)}{\sqsupseteq} U[z . x] \\
\frac{z \in U[z . x]}{f \sqsupseteq U}(1)
\end{array}}
$$

Primitive recursive procedures ...

The rule for recursive synthesis:

$$
\frac{U_{0} \sqsupseteq U[0] \quad f(\mathrm{~m}) \sqsupseteq U[\mathrm{~m}] \vdash U_{1}(f(\mathrm{~m})) \sqsupseteq U[\mathrm{~m}+1]}{f \sqsupseteq U}
$$

Proof:

Primitive recursive procedures ...

Base case:

Induction case:

$$
\begin{gathered}
\frac{\frac{z \in f(\mathrm{~m})}{z . \mathrm{x}=\mathrm{m}+1}}{\frac{z \in U_{1}(f(\mathrm{~m}))}{\frac{z \in f(\mathrm{~m})}{z \in f}}}{ }^{(3) \quad \overline{f(\mathrm{~m}) \sqsupseteq U[\mathrm{~m}]}} \text { (0) } \\
\frac{z \in U[\mathrm{~m}+1]}{f(\mathrm{~m}+1) \sqsupseteq U[\mathrm{~m}+1]}
\end{gathered}
$$

Other types ...

Lists:

$$
\begin{array}{lll}
\text { proc } & f(\mathrm{x}) \text { cases } \mathrm{x} \text { in } & \\
& \text { Nil } & : U_{0} ; \\
& \text { Cons } \mathrm{m}_{0} \mathrm{~m}_{1} & : U_{1}\left(f\left(\mathrm{~m}_{1}\right)\right) \text { endcases }=d f
\end{array}
$$

$$
\begin{aligned}
\forall \mathrm{x}: \text { List } \bullet \mu X \bullet & U_{0} \uparrow \mathrm{x}=\operatorname{Nil} \wedge \\
& \exists \mathrm{m}_{0}, \mathrm{~m}_{1} \bullet U_{1}\left(X\left[\mathrm{x} \Rightarrow \mathrm{~m}_{1}\right]\right) \uparrow \mathrm{x}=\text { Cons } \mathrm{m}_{0} \mathrm{~m}_{1}
\end{aligned}
$$

Other types ...

Trees:

$$
\begin{array}{rlr}
\text { proc } & f(\mathrm{x}) \text { cases } \mathrm{x} \text { in } & \\
& \text { Leaf } \mathrm{m}_{0} & : U_{0} ; \\
\text { Node } \mathrm{m}_{1} \mathrm{~m}_{2} & : U_{1}\left(f\left(\mathrm{~m}_{1}\right), f\left(\mathrm{~m}_{2}\right)\right) \text { endcases }={ }_{d f} \\
\forall \mathrm{x}: \text { Tree } \bullet \mu X \bullet & \exists \mathrm{~m}_{0} \bullet U_{0} \uparrow \mathrm{x}=\text { Leaf } \mathrm{m}_{0} \wedge \\
& \exists \mathrm{~m}_{1}, \mathrm{~m}_{2} \bullet U_{1}\left(X\left[\mathrm{x} \Rightarrow \mathrm{~m}_{1}\right], x\left[\mathrm{x} \Rightarrow \mathrm{~m}_{2}\right]\right) \uparrow \mathrm{x}=\text { Node } \mathrm{m}_{1} \mathrm{~m}_{2}
\end{array}
$$

The "frame problem" ...
What does a specification say about behaviour outside the precondition, and outside the frame?
Dec

```
x, x' : \mathbb{N}
```

$x>0$
$x^{\prime}=x-1$

Solutions:

- Refinement calculus: skip outside the frame.
- Henson-Reeves FACJ: Chaos outside the frame.
$-\nu \mathrm{Z}$: silent outside the frame.

A worked example

The Fibonacci numbers are, as usual, specified as follows:

$$
\begin{aligned}
& f i b \in \mathbb{N} \rightarrow \mathbb{N} \\
& \text { fib }(0)=1 \\
& \text { fib }(1)=1 \\
& \text { fib }(n+2)=\text { fib }(n+1)+\operatorname{fib}(n)
\end{aligned}
$$

We shall take subtraction, over the natural numbers, to satisfy:

$$
n-m=0 \text { whenever } m>n
$$

A worked example

The initial specification is:

Fib

$$
\begin{aligned}
& y, y^{\prime} \in \mathbb{N} \\
& z ? \in \mathbb{N} \\
& y^{\prime}=\text { fib }(z ?)
\end{aligned}
$$

First Stage - frame expansion

The following variation expands the frame to include a new observation, and strengthens the postcondition. Both these transformations are refinements of the original specification.

```
ExFib
x, \mp@subsup{x}{}{\prime},y,\mp@subsup{y}{}{\prime}\in\mathbb{N}
z ? , \in \mathbb { N }
y'}=fib(z?
x}=fib(z?-1
```

First Stage - frame expansion

We have the refinement:

$$
\text { ExFib } \sqsupseteq F i b
$$

In particular: every implementation of ExFib is an implementation of Fib.

Second stage - schema valued functions

We specialise with respect to the input observation z ?. ExFib[z? \#n] =

$$
\begin{aligned}
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& y^{\prime}=\text { fib }(n) \\
& x^{\prime}=\text { fib }(n-1)
\end{aligned}
$$

We are preparing to derive a simply recursive procedure over the input.

Second stage - continued

- If $c_{0} \sqsupseteq U[z ? \Rightarrow 0]$
- and $c_{1} \sqsupseteq U[z$? $\Rightarrow m+1]$, assuming that $p[m] \sqsupseteq U[z ? \Rightarrow m]$
- then:

$$
\begin{array}{lc}
\text { proc } p[z ?] \quad & \text { cases } z ? \text { in } \\
& 0: \quad c_{0} \\
& m+1: c_{1} \\
& \text { endcases } \\
\sqsupseteq U &
\end{array}
$$

Third stage - simplification

$U[z ? \Rightarrow 0]$ simplifies to:

$$
\begin{aligned}
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& y^{\prime}=1 \wedge x^{\prime}=1
\end{aligned}
$$

and this can be refined to the simultaneous assignment:

$$
x, y:=1,1
$$

Third stage - simplification

$U[z ? \Rightarrow m+1]$ simplifies to:

$$
\begin{aligned}
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& y^{\prime}=\operatorname{fib}(m+1) \\
& x^{\prime}=f i b(m)
\end{aligned}
$$

Fourth stage - conjunction

We can express $U[z ? \Rightarrow m+1]$ as a conjunction by splitting the precondition:

$$
U_{0}[m] \wedge U_{1}[m] \sqsupseteq U[z ? \Rightarrow m+1]
$$

Simplifying, we get:

$$
\begin{aligned}
& U_{0}[m] \\
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& m=0 \\
& y^{\prime}=1 \\
& x^{\prime}=1
\end{aligned}
$$

Fourth stage - conjunction

$$
\begin{aligned}
& -U_{0}[m] \\
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& m=0 \\
& y^{\prime}=1 \\
& x^{\prime}=1
\end{aligned}
$$

can, after weakening the precondition be refined to the simultaneous assignment:

$$
x, y:=1,1
$$

Fifth stage - composition

$$
\begin{aligned}
& -U_{1}[m] \\
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& \exists n \in \mathbb{N} \bullet m=n+1 \\
& y^{\prime}=\text { fib }(m+1) \\
& x^{\prime}=\operatorname{fib}(m)
\end{aligned}
$$

A little analysis in the inequational logic (refinement rules) permits us to express this as a composition:

$$
U_{1}[m]={ }_{d f} U_{3}[m]_{9}^{\circ} \text { Step }
$$

Fifth stage - continued

$$
\begin{aligned}
& -U_{3}[m] \\
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& \exists n \bullet m=n+1 \\
& y^{\prime}=\operatorname{fib}(m) \\
& x^{\prime}=\operatorname{fib}(m-1)
\end{aligned}
$$

By weakening the precondition:

$$
U[z ? \Rightarrow m] \sqsupseteq U_{3}[m]
$$

and this can be refined to the recursive call:

$$
p[m]
$$

Fifth stage - continued

Step

$$
\begin{aligned}
& x, x^{\prime}, y, y^{\prime} \in \mathbb{N} \\
& x^{\prime}=y \\
& y^{\prime}=x+y
\end{aligned}
$$

This can be refined to a simultaneous assignment:

$$
x, y:=y, x+y
$$

The derived program

$$
\begin{aligned}
& \text { proc } p[z ?] \quad \text { cases } z \text { ? in } \\
& \begin{array}{l}
0: \quad x, y:=1,1 \\
m+1
\end{array} \\
& \quad \text { then } x, y:=1,1 \\
& \quad \text { else } p[m] ; x, y:=y, x+y
\end{aligned}
$$

and this is a refinement of the original specification Fib.

Structuring derivations

Consider the following specification:

$$
\begin{aligned}
& I n c \\
& n, n^{\prime} \in \mathbb{N} \\
& n^{\prime}=n+1
\end{aligned}
$$

We wish to consider this as a local operation over the local state \mathbb{N}. It is trivially implemented by:

$$
n:=n+1
$$

Promotion ...

In the global state we have two numbers, represented by the cartesian product $\mathbb{N} \times \mathbb{N}$. The global operation simply generalises the local operation by specifying which of the two values is to be altered. The promotion schema explains how the local and global state spaces are to be connected.

Promote

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& z ? \in\{0,1\} \\
& \left(z ?=0 \wedge p .1=n \wedge p^{\prime} .1=n^{\prime} \wedge p^{\prime} .2=p .2\right) \vee \\
& \left(z ?=1 \wedge p .2=n \wedge p^{\prime} .2=n^{\prime} \wedge p^{\prime} .1=p .1\right)
\end{aligned}
$$

Derivation ...

Finally, the global operation is defined by hiding the local state changes:

$$
\text { Globallnc }={ }_{d f} \exists n, n^{\prime} \in \mathbb{N} \bullet I n c \wedge \text { Promote }
$$

The first step in the derivation is to abstract with respect to the input observation z ? and then to expand the conjunction by splitting the precondition of the promotion schema. This leads to:

$$
\exists n, n^{\prime} \in \mathbb{N} \bullet\left(I n c \wedge P_{0}[m]\right) \vee\left(\operatorname{Inc} \wedge P_{1}[m]\right)
$$

Derivation ...

Where, for example:

$$
\begin{aligned}
& P_{0}[m] \\
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& m=0 \\
& p .1=n \\
& p^{\prime} .1=n^{\prime} \\
& p^{\prime} .2=p .2
\end{aligned}
$$

Refinement - continued

We can refine $\operatorname{Inc} \wedge P_{0}[m]$ to:

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& m=0 \\
& p .1=n \\
& n^{\prime}=n+1 \\
& p^{\prime} .1=n^{\prime} \\
& p^{\prime} .2=p .2
\end{aligned}
$$

Refinement - continued

We can then express the schema as a composition of:

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& n^{\prime}=p .1+1
\end{aligned}
$$

with:

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& p^{\prime} .1=n \\
& p^{\prime} .2=p .2
\end{aligned}
$$

Refinement - continued

The former can be refined to a composition of:

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& n^{\prime}=p .1
\end{aligned}
$$

followed by:

Inc
$n, n^{\prime} \in \mathbb{N}$
$n^{\prime}=n+1$

Refinement

These are refined to:

$$
n:=p .1 \text { and the local operation } n:=n+1
$$

and:

$$
\begin{aligned}
& n, n^{\prime} \in \mathbb{N} \\
& p, p^{\prime} \in \mathbb{N} \times \mathbb{N} \\
& p^{\prime} .1=n \\
& p^{\prime} .2=p .2
\end{aligned}
$$

can be refined to an assignment:

$$
p .1:=n
$$

Refinement

The assignments now sequence to implement the relevant composed specifications and the split precondition leads to a conditional. The quantifed program can be refined into a block; and the entire specification of Globallnc into a procedure: In summary we have the following program:

```
proc globalinc[z?]
    begin var n;
        if z? then n:= p.1; n:= n+1; p.1:= n
        else n:=p.2;n:=n+1; p.2:=n
    end
```


Conclusions ...

- νZ is very small and easy to understand.
- $\nu \mathrm{Z}$ is very adaptable for creating a more comprehensive specification language.
- $\nu \mathrm{Z}$ is very adaptable for integrating a programming language.
- $\nu \mathrm{Z}$ is completely formal.
- $\nu \mathrm{Z}$ is designed for reasoning about specifications.
- $\nu \mathrm{Z}$ is designed for reasoning about programs.
- $\nu \mathrm{z}$ is designed for deriving programs from specifications.

