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Some (of my personal) history ...

• Program development in constructive set theories (–1997)
◦ a : A – “Propositions as types” (Martin-Löf; Feferman)

• Constructive Z (FMP 1998)
◦ Programs from (constructive) proofs

• Z logics (FACJ, JLC, 1999–2000)
◦ ZC and Z⊥

C
– Classical logics for Z

• Classical “sets of implementations” (FACJ 2003)
◦ f A U – Classical, non-Z ...

• Theories of refinement (JIGPAL 2003)
◦ total correctness refinement for partial relation semantics

• νZ– wide-spectrum logic
◦ U0 ⊒ U1 – Classical, non-Z, relational ...
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What is νZ ...?

The framework νZ is a modification of the specification language
Z. The differences are as follows:

• Z is based on a partial-correctness semantics; νZ is based
on a total-correctness semantics.

• Z permits refinement of over–specifications; νZ does not.
• Z schema operators are not monotonic; νZ schema

operators are monotonic (anti-monotonic).
• Z is based on equality ; νZ is based on refinement.
• Z is a specification language; νZ is wide-spectrum.
• Z is relatively inflexible; νZ is extensible.
• Z is a language; νZ is a logic.
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What is νZ ...?

Core language of specifications:

U ::=

X – schema variable
[T | P | Q] – atomic schemas
¬U – negation schemas
U0 ∨ U1 – disjunction schemas
∃x : T • U0 – existential hiding schemas
µ X • U(X) – recursive schemas (positive X only)
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What is νZ ...?

The language of νZ is (at present) interpreted within Z⊥
C

, a
conservative extension of ZC , the Z logic developed by Steve
Reeves and me between 1997 and 2000.

Example semantics:

JU0 ∨ U1K =df {z ∈ T∗ | z
.

∈ JU0K ∨ z
.

∈ JU1K}

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 5/54



Z versus νZ semantics ...

An operation schema:

U

x,x′ ∈ {0, 1, 2, 3}

(x = 0 ∧ x′ = 0) ∨

(x = 2 ∧ x′ = 2) ∨

(x = 2 ∧ x′ = 3)
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Z semantics ...

The dots on the left correspond to the possible input states,
written 〈| x⇛n |〉 for the various of n. The dots on the right to the
possible output states, written 〈| x′⇛n |〉.
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νZ semantics ...

... the lifted-totalised completion of the original relation.
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What is a (wide-spectrum) logic ...?

Everything is characterised by introduction and elimination rules.
For example, atomic operation schemas:

z0.P ⊢ z0.z
′
1.Q

z0 ⋆ z′1 ∈ [T | P | Q]
(U+)

z0 ⋆ z′1 ∈ [T | P | Q] z0.P

z0.z
′
1.Q

(U−)

For example, refinement:

z ∈ U0 ⊢ z ∈ U1

U0 ⊒ U1

(⊒+)
U0 ⊒ U1 z ∈ U0

z ∈ U1
(⊒−)

For example, schema hiding:

z ∈ U

z
.

∈ ∃x : V • U
(U+

∃
) z ∈ ∃x : V • U z ⋆ 〈| x⇛y |〉 ∈ U ⊢ P

P
(U−

∃
)
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What is νZ ...?

Note that negation in νZ is not the relational inverse: it is
well-known that the universe of total-correctness relations in this
model is not closed under that operation. An alternative
characterisation of the semantics is available using a
combination of relational inverse, disjunction and lifting.

abort = {z0 ⋆ z′1 ∈ T∗ | z0 =⊥}

Then:
¬U =df U−1 ∨ abort

The rules for negation are:

t 6∈ U

t ∈ ¬U

t0 =⊥

t0 ⋆ t ′1 ∈ ¬U

t0 ⋆ t ′1 ∈ ¬U t0 ⋆ t ′1 6∈ U ⊢ P t0 =⊥ ⊢ P

P
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What is νZ ...?

Properties of negation include:

Double negation: U = ¬¬U

Excluded middle: chaos = U ∨ ¬U.

Operator definitions are used to extend the core language:

OP(· · · Xi · · ·) =df U(· · · Xi · · ·)
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Specification in νZ ...

First specifications are to provide new ways to specify ...

We can define conjunction in terms of disjunction and negation,
using the usual de Morgan definition:

U0 ∧ U1 =df ¬(¬U0 ∨ ¬U1)

The usual rules are derivable.

z ∈ U0 ∧ U1

z
.

∈ Ui

z
.

∈ U0 z
.

∈ U1

z ∈ U0 ∧ U1
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Specification in νZ ...

Schema implication can be defined in the standard way.

U0 ⇒ U1 =df ¬U0 ∨ U1

With the rules:

z
.

∈ U0 ⊢ z
.

∈ U1

z ∈ U0 ⇒ U1

z ∈ U0 ⇒ U1 z
.

∈ U0

z
.

∈ U1
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Specification in νZ ...

Universal hiding can be specified using existential hiding and
negation:

∀x : T • U =df ¬∃x : T • ¬U

With the rules:

t ⋆ 〈| x⇛z |〉 ∈ U

t ∈ ∀x : T • U

t ∈ ∀x : T • U v ∈ T

t ⋆ 〈| x⇛v |〉 ∈ U
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Specification in νZ ...

Further Examples:

abort =df [T | false | false] – abort
chaos =df [T | false | true] – chaos
chaosP =df [T | ¬P | false] – P–chaos
U[x⇛E] =df chaosx=E ∧ U – schema specialisation
U ↑ P =df chaosP ⇒ U – strengthened preconditions
ΞU =df [∆U | true | θU = θ′U] – Ξ-schemas
U ⋄ T =df U ∧ ΞT – skip–extension
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Specification in νZ ...

Composition can be specified using a modification of the
standard approach:

U0
o

9 U1 =df ∃t • (U0 ⋄ TL)[α0/t] ∧ (U1 ⋄ TR)[α1/t]

With the rules:

t0 ⋆ t ′2
.

∈ U0 t0 =TL
t2 t2 ⋆ t ′1

.

∈ U1 t2 =TR
t1

t0 ⋆ t ′1 ∈ U0
o

9 U1

(U+
o

9

)

t0 ⋆ t ′1 ∈ U0
o

9 U1 t0 ⋆ t ′2
.

∈ U0, t0 =TL
t2, t2 ⋆ t ′1

.

∈ U1, t2 =TR
t1 ⊢ P

P
(U−

o

9

)
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Specification in νZ ...

Can also specify a programming language ...

(i) skip =df [∆T | true | θT = θ′T ]

(ii) x:= E =df [x, x ′ : T | true | x ′ = E] ⋄ TE

(iii) if D then X0 else X1 =df X0 ↑ D ∧ X1 ↑ ¬D

(iv) begin var x;X end =df ∃x,x′ • X

(v) proc f(x) cases x in 0 : X0; m+ 1 : X1(f(m)) endcases =df

∀x : N • µ X • X0 ↑ x = 0 ∧ ∃m • X1(X [x⇛m]) ↑ x = m+ 1

(vi) f(E) =df f [x⇛E]
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Program logic ...

Simple example, conditionals:

if D then U0 else U1 =df U0 ↑ D ∧ U1 ↑ ¬D

Rules:
z.D ⊢ z

.

∈ U0 ¬z.D ⊢ z
.

∈ U1

z ∈ if D then U0 else U1
(if+)

z ∈ if D then U0 else U1 z.D

z
.

∈ U0

(if−


)

z ∈ if D then U0 else U1 ¬z.D

z
.

∈ U1

(if−


)
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Inequational (refinement) logic ...

if D then [T | P | D ∧ Q] else [T | P | ¬D ∧ Q] ⊒ [T | P | Q]

Proof:

z.D ∨ ¬z.D

z.P
()

z ∈ if z.D
()

z ∈ [T | P | D ∧ Q]

z.(D ∧ Q)

z.Q

z.P
()

z ∈ if ¬z.D
()

z ∈ [T | P | ¬D ∧ Q]

z.(¬D ∧ Q)

z.Q

z.Q
()

z ∈ [T | P | Q]
()
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Refinement logic ...

Preconditions and postconditions:

P1 ⊢ P0

[T | P0 | Q] ⊒ [T | P1 | Q]
(⊒+

pre)
Q0 ⊢ Q1

[T | P | Q0] ⊒ [T | P | Q1]
(⊒+

post)

Composition:

P2 ⊢ P0 ∧ ∀ v • Q0[x′/v ] ⇒ P1[x′/v ] ∃ u • Q0[x′/v ] ∧ Q1[x′/v ] ⊢ Q2

[T0 | P0 | Q0] o

9 [T1 | P1 | Q1] ⊒ [T0 g T1 | P2 | Q2]

Conjunction:

P2 ⊢ P0 ∧ P1 Q0 ∨ Q1 ⊢ Q2

[T0 | P0 | Q0] ∧ [T1 | P1 | Q1] ⊒ [T0 g T1 | P2 | Q2]
(⊒

∧
)
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Refinement logic ...

Completely general transformation of conjunction to
composition:

P2 ∨ P3 ⊢ P0 ∧ ∀ v • Q0[x′/v ] ⇒ P1[x′/v ]

∃ v • Q0[x′/v ] ∧ Q1[x′/v ] ⊢ Q2 ∧ Q3

[T0 | P0 | Q0] o

9 [T1 | P1 | Q1] ⊒ [T2 | P2 | Q2] ∧ [T3 | P3 | Q3]
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Monotone inductive schemas ...

The µ X • U(X) are recursive schemas.
The schema algebra is monotonic (but not ω-continuous). Thus:

Jµ X • U(X)K =df

l
{X ∈ W | JU(X)K ⊒ X}

satisfies:
µ X • U(X) = U(µ X • U(X)) (µ)

It can be characterised as follows:
⊔

i<κ

U i(chaos) = µ X • U(X)

for some suitably f**k-off-huge ordinal κ.
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Primitive recursive procedures ...

It takes 6 schema operators to specify primitive recursion over
the natural numbers:

proc f(x) cases x in 0 : X0; m+ 1 : X1(f(m)) endcases =df

∀x : N • µ X • X0 ↑ x = 0 ∧ ∃m • X1(X [x⇛m]) ↑ x = m+ 1

Introduction rule (proof requires µ):

z.x = 0 ⊢ z
.

∈ U0 z.x = z.m+ 1 ⊢ z
.

∈ U1(f(m))

z
.

∈ f

Elimination rules:

z
.

∈ f z.x = 0

z
.

∈ U0

z
.

∈ f z.x = m+ 1

z
.

∈ U1(f(m))
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Primitive recursive procedures ...

The rules for N are as follows:

0 ∈ N
(N+


) n ∈ N

n + 1 ∈ N
(N+


) n ∈ N

0 6= n + 1

n + 1 = m + 1
n = m

P(0) m ∈ N, P(m) ⊢ P(m + 1)

n ∈ N ⊢ P(n)
(N−)
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Primitive recursive procedures ...

Characterising a procedure in terms of (all) its invocations:

n ∈ N ⊢ f(n) ⊒ U[n]

f ⊒ U
(invN)

Proof:

z ∈ f
()

z.x = z.x
z ∈ f(z.x)

z.x ∈ N....
f(z.x) ⊒ U[z.x]

z ∈ U[z.x]
z ∈ U

f ⊒ U
()
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Primitive recursive procedures ...

The rule for recursive synthesis:

U0 ⊒ U[0] f(m) ⊒ U[m] ⊢ U1(f(m)) ⊒ U[m+ 1]

f ⊒ U

Proof:

....
f(0) ⊒ U[0]

f(m) ⊒ U[m]....
f(m+ 1) ⊒ U[m+ 1]

f(n) ⊒ U[n]
N
−

f ⊒ U
(invN)
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Primitive recursive procedures ...

Base case:

U0 ⊒ U[0]

z ∈ f(0)
()

z.x = 0

z ∈ f(0)
()

z ∈ f
z ∈ U0

z ∈ U[0]

f(0) ⊒ U[0]
()

Induction case:

z ∈ f(m)
()

z.x = m+ 1

z ∈ f(m)
()

z ∈ f

z ∈ U1(f(m))

f(m) ⊒ U[m]
()

....
U1(f(m)) ⊒ U[m+ 1]

z ∈ U[m+ 1]

f(m+ 1) ⊒ U[m+ 1]
()
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Other types ...

Lists:

proc f(x) cases x in

Nil : U0;

Cons m0 m1 : U1(f(m1)) endcases =df

∀x : List • µ X • U0 ↑ x = Nil ∧

∃m0,m1 • U1(X [x⇛m1]) ↑ x = Cons m0 m1
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Other types ...

Trees:

proc f(x) cases x in

Leaf m0 : U0;

Node m1 m2 : U1(f(m1), f(m2)) endcases =df

∀x : Tree • µ X • ∃m0 • U0 ↑ x = Leaf m0 ∧

∃m1,m2 • U1(X [x⇛m1], X [x⇛m2]) ↑ x = Node m1 m2
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The “frame problem” ...

What does a specification say about behaviour outside the
precondition, and outside the frame?

Dec

x,x′ : N

x > 0

x′ = x− 1

Solutions:

– Refinement calculus: skip outside the frame.
– Henson-Reeves FACJ: Chaos outside the frame.
– νZ: silent outside the frame.
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A worked example

The Fibonacci numbers are, as usual, specified as follows:

fib ∈ N → N

fib(0) = 1

fib(1) = 1

fib(n + 2) = fib(n + 1) + fib(n)

We shall take subtraction, over the natural numbers, to satisfy:

n − m = 0 whenever m > n
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A worked example

The initial specification is:

Fib

y, y ′ ∈ N

z? ∈ N

y ′ = fib(z?)
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First Stage - frame expansion

The following variation expands the frame to include a new
observation, and strengthens the postcondition. Both these
transformations are refinements of the original specification.

ExFib

x, x ′, y, y ′ ∈ N

z? ∈ N

y ′ = fib(z?)

x ′ = fib(z? − 1)
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First Stage - frame expansion

We have the refinement :

ExFib ⊒ Fib

In particular: every implementation of ExFib is an implementation
of Fib.
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Second stage - schema valued functions

We specialise with respect to the input observation z?.
ExFib[z?⇛n] =

x, x ′, y, y ′ ∈ N

y ′ = fib(n)

x ′ = fib(n − 1)

We are preparing to derive a simply recursive procedure over
the input.

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 35/54



Second stage – continued

• If c0 ⊒ U[z?⇛0]

• and c1 ⊒ U[z?⇛m + 1], assuming that p[m] ⊒ U[z?⇛m]

• then:

proc p[z?] cases z? in

0 : c0,

m + 1 : c1

endcases

⊒ U
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Third stage – simplification

U[z?⇛0] simplifies to:

x, x ′, y, y ′ ∈ N

y ′ = 1 ∧ x ′ = 1

and this can be refined to the simultaneous assignment:

x, y := 1, 1
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Third stage – simplification

U[z?⇛m + 1] simplifies to:

x, x ′, y, y ′ ∈ N

y ′ = fib(m + 1)

x ′ = fib(m)
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Fourth stage – conjunction

We can express U[z?⇛m + 1] as a conjunction by splitting the
precondition:

U0[m] ∧ U1[m] ⊒ U[z?⇛m + 1]

Simplifying, we get:

U0[m]

x, x ′, y, y ′ ∈ N

m = 0

y ′ = 1

x ′ = 1
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Fourth stage – conjunction

U0[m]

x, x ′, y, y ′ ∈ N

m = 0

y ′ = 1

x ′ = 1

can, after weakening the precondition be refined to the
simultaneous assignment:

x, y := 1, 1
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Fifth stage – composition

U1[m]

x, x ′, y, y ′ ∈ N

∃ n ∈ N • m = n + 1

y ′ = fib(m + 1)

x ′ = fib(m)

A little analysis in the inequational logic (refinement rules)
permits us to express this as a composition:

U1[m] =df U3[m] o

9 Step
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Fifth stage – continued

U3[m]

x, x ′, y, y ′ ∈ N

∃ n • m = n + 1

y ′ = fib(m)

x ′ = fib(m − 1)

By weakening the precondition:

U[z?⇛m] ⊒ U3[m]

and this can be refined to the recursive call :

p[m]

Sheffield – January ’05 – revision: January 10, 2005 at 7:21am – p. 42/54



Fifth stage – continued

Step

x, x ′, y, y ′ ∈ N

x ′ = y

y ′ = x + y

This can be refined to a simultaneous assignment:

x, y := y, x + y
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The derived program

proc p[z?] cases z? in

0 : x, y := 1, 1

m + 1 : if m == 0

then x, y := 1, 1

else p[m]; x, y := y, x + y

endcases

and this is a refinement of the original specification Fib.
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Structuring derivations

Consider the following specification:

Inc

n, n′ ∈ N

n′ = n + 1

We wish to consider this as a local operation over the local state
N. It is trivially implemented by:

n := n + 1
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Promotion ...

In the global state we have two numbers, represented by the
cartesian product N × N. The global operation simply
generalises the local operation by specifying which of the two
values is to be altered. The promotion schema explains how the
local and global state spaces are to be connected.

Promote

n, n′ ∈ N

p, p′ ∈ N × N

z? ∈ {0, 1}

(z? = 0 ∧ p.1 = n ∧ p′.1 = n′ ∧ p′.2 = p.2) ∨

(z? = 1 ∧ p.2 = n ∧ p′.2 = n′ ∧ p′.1 = p.1)
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Derivation ...

Finally, the global operation is defined by hiding the local state
changes:

GlobalInc =df ∃ n, n′ ∈ N • Inc ∧ Promote

The first step in the derivation is to abstract with respect to the
input observation z? and then to expand the conjunction by
splitting the precondition of the promotion schema. This leads
to:

∃ n, n′ ∈ N • (Inc ∧ P0[m]) ∨ (Inc ∧ P1[m])
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Derivation ...

Where, for example:

P0[m]

n, n′ ∈ N

p, p′ ∈ N × N

m = 0

p.1 = n

p′.1 = n′

p′.2 = p.2
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Refinement – continued

We can refine Inc ∧ P0[m] to:

n, n′ ∈ N

p, p′ ∈ N × N

m = 0

p.1 = n

n′ = n + 1

p′.1 = n′

p′.2 = p.2
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Refinement – continued

We can then express the schema as a composition of:

n, n′ ∈ N

p, p′ ∈ N × N

n′ = p.1 + 1

with:

n, n′ ∈ N

p, p′ ∈ N × N

p′.1 = n

p′.2 = p.2
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Refinement – continued

The former can be refined to a composition of:

n, n′ ∈ N

p, p′ ∈ N × N

n′ = p.1

followed by:

Inc

n, n′ ∈ N

n′ = n + 1
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Refinement

These are refined to:

n := p.1 and the local operation n := n + 1

and:

n, n′ ∈ N

p, p′ ∈ N × N

p′.1 = n

p′.2 = p.2

can be refined to an assignment:

p.1 := n
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Refinement

The assignments now sequence to implement the relevant
composed specifications and the split precondition leads to a
conditional. The quantifed program can be refined into a block;
and the entire specification of GlobalInc into a procedure:
In summary we have the following program:

proc globalinc[z?]

begin var n;

if z? then n := p.1; n := n + 1; p.1 := n

else n := p.2; n := n + 1; p.2 := n

end
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Conclusions ...

• νZ is very small and easy to understand.
• νZ is very adaptable for creating a more comprehensive

specification language.
• νZ is very adaptable for integrating a programming

language.
• νZ is completely formal.
• νZ is designed for reasoning about specifications.
• νZ is designed for reasoning about programs.
• νZ is designed for deriving programs from specifications.
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