Dolce far niente?

Refined versions of skip, etc.

(Procs.: " Perspicuity and Granularity in Refinement”)
Eerke A. Boiten

Refine 2011, 20 June, Limerick



Thanks to Carroll Morgan.

—_AS
b:bagN

ﬁAInit
AS’




Retrieve relation: b = items(s)

CS

_—
S :segN

_— CInit

Ccs’

Cin - Cout

—Cycle

ACS
(s=(ns'=()V
s’ = (tail s) " (head s)




Retrieve relation: b = items(s)

CS

—
S :segN

Cin - Cout

— Sort

ACS
items(s) = items(s’)
sorted(s’)




— Cout
ACS
x!:'N
s7 ()
sorted(s

s=(x"s

/

—_Sort
ACS
items(s) = items(s’)
sorted(s’)

SortOut == Sort § Cout, i.e.,

—_SortOut

ACS

x!:'N

s# ()

15" : seqN e items(s) = items(s”) A sorted(s”)
A s =(xI)"s




Uncontroversial: SortOut refines AOut under
the retrieve relation b = items(s). (Sort and
Cout are only used to define SortOut)

(More precisely: the data types containing .. .,
it is a data refinement!)

(Aside: Cin§ Sort also makes sense but needs
stronger retrieve.)

Less simple: “does Cout refine Aout’?

The answer depends on the prevalent notion
of refinement, and (!) on the status of Sort.



‘Prevalent Notion of Refinement

(1) Consistency The effect of the concrete is
allowed by the abstract.

(2) Enabledness When operations can be in-
voked in the abstract state, they can be
invoked in the concrete state as well.

(3) Restricted consistency Where the abstract
IS enabled, the effect of the concrete is
allowed by the abstract.

(1) or (3) is the essence: client spots no
difference; (2) preserves client experiments.

(1) implies a converse of (2)

(3) without (2) makes no sense: not transitive
6



Traditional Z: (2)4(3)
Trace refinement: (1)

Event-B or Action Systems: (1)+4 weaker (2)
(“global deadlock” or “termination”)

Failures-based: (1)+4(2), with subtle differences
in details of (2)



Adding Operations in Refinement
First the simple cases:

Alphabet Extension Just add more ops: fine
in (3), odd in (1). Semantics: consider only
traces over “old” alphabet.

Alphabet Translation 1-n map abstract to
concrete alphabets. (Event-B “splitting”).

Semantics: translate traces.

Moving on to harder cases. ..



Adding Operations in Refinement
Perspicuous Operations

“nothing” happens “most of the time” .
(Stuttering steps)

Concrete events which refine abstract “skip”.
Call such events perspicuous. Refers to ‘“this”
refinement step only. Semantics: cross out
perspicuous events from concrete trace, then
compare with abstract.

(“internal” events later: more requirements.)
Event-B: “refinements of modelling”

In example: Sort and Cycle are candidates



Perspicuous Operations: Divergence

Event-B: no additional deadlock due to new
perspicuous events.

Semantics view: ‘“crossing out” guaranteed to
terminate, introduction of perspicuous events
does not turn finite traces into infinite ones.

Proof of non-divergence: through variants etc.
Preserved subsequently if (1) rather than (3).

Unfortunately both Sort and Cycle diverge.
(How to fix ...)

10



Butler (IFM'09): “The new events introduced in
a refinement step can be viewed as hidden events not
visible to the environment of a system and are thus
outside the control of the environment”

So are Event-B new events just perspicuous?
Internal Operations

An internal operation is (7) perspicuous, with
a special status:assumed to be invisible to the
environment, under internal control of the
system only.

Inspiration: process algebras (encapsulating in-
ternal communication, encoding internal choice,

)

Semantics (assuming no abstract internal ops):

take joint behaviour of all concrete traces that

match when internals crossed out, and com-

pare. (Asin LTS — replaced by = for “weak”
)

11



Consequences:

e internal actions have a special status which
remains

e if internal actions are necessary for progress,
they will “eventually” happen, so external
operations are viewed as “enabled” if their
before-state is reachable through internal
behaviour;

e NO need for independent refinement con-
ditions for internal operations: all internal
behaviour is viewed in the context of its
composition with external behaviour. Thus,
internal operations need not be refinements
of sKip.

B [Butler] and Z [Derrick/Boiten] “weak”
refinement: prevention of divergence. More
general: reduce [Boiten/Derrick/Schellhorn 2009].

12



Adding Operations in Refinement
Action Refinement

NO special status actions, just a translation
that matches 1 abstract action to a sequence
of concrete ones.

Like ASM 1-n diagrams.

Special case n=2: like introducing “;" in
refinement calculus: find the intermediate state.
Problem: interference in intermediate state.

(Exists whatever approach.)

13



How to Reduce Granularity

Three semantic models for reducing the
granularity of actions in refinement:

e perspicuous actions that take on some of
the “work”

e internal actions to the same effect —
either as perspicuous actions, or more
general “weak”

e explicit decompositions of actions where all
parts have same status.

14



Combining with Prevalent Notion

Consider n = 2, first step is preparatory, second
is real work AW vs Prep and CW.

Using perspicuous actions: Prep refines skKip,
CW refines AW. Now cannot have (2)
(explain: two reasons).

Using internal actions, same rule: same prob-
lems.

Using weak refinement rules: this works with
(2), and can be done with either (1) or (3).

Using explicit action refinement: fine.

15



A Conclusion for Event-B

Two entangled design decisions:

e to have essentially a trace semantics with
only global deadlock prevention;

e to use stuttering step refinements for
reducing granularity.

Advantage: simple refinement obligations from
both.

Disadvantage: cannot strengthen basic refine-
ment without a very significant cost.

16



